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Abstract : The highly substituted F ring of Spongistatins was synthesized from (R)-(+)-3-
benzyloxy-2-methylpropan-1-oi (5), using two sequential Sharpiess dihydroxylations as key-steps. A
4-deoxy-4-methyl-D-threo-L-glucoheptopyranose derivative was obtained and could be used to
generate the corresponding allyl B-C-glycoside. © 1998 Elsevier Science Ltd. All rights reserved.

Following the recent isolation and structural elucidation of Spongistatins,! which displayed remarkable

on the development of a synthetic route to these marine macrolides. Due to their very low natural abundance, the
1 evaluation and medicinal
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exploitation of their antimitotic potential.
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Spongistatins consist of 42-membered macrocyclic lactones (Scheme 1), possessing complex structural features

such as two | cetal units (AB and CD), ulose and C-pyranoside rings (E and F) and triene side chains.

Seminal achievements were reported on the synthesis of the spiroacetal subunits® and more recently,
Paterson? described the construction of the highly functionalized C34-C4¢ fragment. In this paper, we wish to
present a new stereocontrolled approach to a 4-deoxy-4-methyl-D-threo-L-glucoheptopyranose derivative that
constitute the C37-Cy4s fragment of Spongistatins, containing the F ring. Our retrosynthetic analysis was based
on the selective cyclization of tetraol 2 which should lead to the hemiacetal 1 with all equatorial substituents. The
linear precursor 2 should be obtained by two sequential and stereoselective dihydroxylations, the monoprotected
diol 5 being the precursor for this two directional chain elongation. Our synthesis of the F pyranoside fragment

is summarized in Scheme 2.
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(a) PCC 1.5 eq, CH,Cl,, RT, 5h; (b) (EtO),P(O)CH,CO,Et 1.6 ¢q, NaH 1.5 eq, THF, -78°C, 10 min; (c) (1) OsOy4 1.5%,

NMO 1.5 eq, 0°C-->RT, 10h; (2) K,0s0,(0H), 1%, (DHQD),PHAL 5%, K;Fe(CN); 3 eq, K,CO4 3 eq, MeSO,NH; 1 eq,
‘BuOH / H,0 (1/1), RT, 24h; (d) TDBMSOTT 3 eq, 2,6-lutidine 5 eq, CH,Cl,, 0°C-->RT; (¢) Hy, Pd/C, MeOH, RT; (f) Dess-
Martin periodinane 1.8 eq, CH,Cly, RT, 3h; (g) (EtO),P(O)CH,CO,Et 1.8 eq, NaH 1.7 eq, THF, -78°C, 5 min; (h) Os0, 6%
NMO 2.2 eq, acetone / H,0, RT, 18h; (i) HF(aq) / MeCN (5 / 95), 10h; TBDMSOT{ 4 eq; 2,6-lutidine 6 eq, CH,Cly, 0°C-->RT.

Scheme 2

The starting (R)-(+)-3-benzyloxy-2-methylpropan-1-ol 5 was prepared by enzymatic resolution, as reported by

uantitative oxidation of the primary alcohol, a Wittig-Horner reaction with
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8b = 22 : 78.8 These diols, which could not be separated by chromatography, were protected as tert-

11 /N

butyidimethyisilyi ethers in high yield (92-1

nnns
O

%). Sequential hydrogenolysis of the terminal benzyi ether and
oxidation of the resulting primary alcohol with Dess-Martin periodinane?, gave crude aldehyde 10 which did not
need any purification. Conversion to the unsaturated ethyl esters 11a and 11b was carried out by means of a
second Wittig-Horner olefination with 60 to 75% yield. This mixture was submitted to Sharpless
dihydroxylation which took place with almost complete anti diastereoselectivity with respect to the methyl
group. Moreover, we found out that the tetrol with all hydroxyl groups anti with respect to the methyl group

easy separation of the two isomers. After desilylation, using aqueous HF in acetonitrile, the open tetrol cyclized
to give aldonolactone 14, after reprotection. Two-dimentional NMR experiments (NOESY, COSY45)
PR e PR I - £ ~ ‘n U S U, SR [ S FED G U SRRSO R Al ¢ DR, SR S .
confirmed ihe rel: *¥ {0 be the one required in the F subunit of Spongisiatin 1. The

tive configuration of 14
enantiomeric excess at that stage, determined after conversion to Mosher's ester,!! was of 91%. Treatment with
DIBAL-H reduced the lactone selectively, and the resulting hemiacetal was bis-acetylated (89% yield) to give
our targeted pyranoside 1.12

In the presence of one equivalent of TMSOT( and acetic anhydride, the two silyl protective groups were replaced
by acetates leaving us with participating group for the B8-C-glycosidation. Treatment of this crude reaction
mixture with allyltrimethylsilane and more TMSOTT as the Lewis acid promotor,!3 gave a 9:1 mixture of B-C-
pyranoside 1514 and o-C-pyranoside 16 (60% yield). Interestingly and expectedly, the allyl -C-pyranoside of

1 was obtained by direct treatment with allyltrimethylsilane and TMSOTY.
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(a) DIBAL-H 3 eq, -78°C, CH,Cl,, 30 min; (b) Ac,0O / pyridine (1/1), DMAP cat, RT, 8h; (c) TMSOTf 1 eq, Ac,0 2 eq, MeCN,
-20°C, 1h; (d) TMSOTI{ 3 eq, AllylSiMe; 4eq, MeCN, 0°C, 5h.

Scheme 3
In conclusion, the total synthesis of the protected 4-deoxy-4-methyl-D-threo-L-glucopyranouronate 1 was
achieved in 12 steps from chiral diol 5. C-glycosidation of 1 was successful and should allow one to use it in

the construction of Spongistatins. Our approach features several steps which do not need any purification of
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crude materiais and that can be carried out on large qua underway

synthesis of the diene side chain and to build the ulose ring from the terminal ester of 1 or 15.
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